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Asymmetric dispersion relation in spin-spiral structures
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The asymmetric spin-wave dispersion relation observed recently [Zakeri et al., Phys. Rev. Lett. 104, 137203
(2010)], is explained within a quantum model consisting of an anisotropic Heisenberg coupling and the
Dzyaloshinski-Moriya interaction (DMI). Applying a transformation of the spin operators into a representation
without fixed quantization axis, a Green’s function technique for finite temperatures allows to obtain the
spin-wave dispersion for various magnetic spiral structures including cycloidal and conical ones. In case of
vanishing anisotropy, the DMI drives an incommensurate antiferromagnetic alignment forming a cycloidal spin
spiral. The spin-wave dispersion is symmetric. For nonzero anisotropy, the spins are aligned in a transverse
conical spiral and the dispersion becomes asymmetric in agreement with the experimental observation. The

asymmetry is reduced with increasing temperature.
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There is a considerable effort in understanding complex
magnetic structures.! The high resolution of spin-polarized
scanning tunneling microscopy allows the detection of more
complicated magnetic patterns such as in a Mn monolayer on
W(110) and W(100) surfaces.>* Ultrathin Fe film grown on
W(110) is another system where a very refined magnetic
structure had been observed likewise.>

Theoretically a spiral alignment of the spins can arise
from a competition between nearest neighbors and next-
nearest neighbors. However, such an explanation does not
reflect the breaking of inversion symmetry in thin films. Oth-
erwise, it 1is well established that the relativistic
Dzyaloshinski-Moriya interaction (DMI) plays an important
role in systems without inversion symmetry.®® Phenomeno-
logically, the antisymmetric DMI between two adjacent mag-
netic atoms reads E,=D;,-(S;XS,). The coupling vector
D,, is antisymmetric and disappears in case of an inversion
symmetry between the lattice sites 1 and 2. Originally the
DMI had been introduced® to explain the weak ferromag-
netism in antiferromagnetic material, for instance, in MnCOj3
or CrF; compounds. Due to the competition between the
isotropic Heisenberg antiferromagnetic coupling and the
DMI, a canted magnetic structure is realized leading to an
uncompensated weak magnetization. The role of the DMI is
widely discussed in a broad class of materials such as frus-
trated systems,' the induced spin chirality in spin chains,!!
cubic magnets at low temperatures,'” entanglement of the
Ising model with DMI,'? and valence-bond systems.'* Notice
that a comprehensive effective theory for helimagnets is dis-
cussed in Ref. 15. The study of various spin alignments is
raised additionally by the search for new types of order in
magnetoelectric multiferroics in which both magnetic and
ferroelectric order coexist.'~!® A characteristic property of
magnetic multiferroics is the occurrence of an electric polar-
ization due to a spiral magnetic ordering.'*?! The discovery
of multiferroics was accompanied by a theoretical progress
in the description of such noncollinear structures on a micro-
scopic scale?>?* and a mesoscopic one.>* The results are re-
garded as an inverse effect of the DMI. Multiferroic perovs-
kites are analyzed in Ref. 25 and moreover, the relationship
between ferroelectricity and DMI is discussed in Ref. 26 as
well as an exchange bias driven by DMI in antiferromagnetic
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interfaces.?” Recently the dynamical interplay between ferro-
electricity and magnetism is analyzed including the DML

The seminal studies of multiferroics has initiated the
present one which is focused on the recently observed asym-
metric spin-wave dispersion relation on Fe(110).%° In Ref.
29, the first experimental evidence is given of the influence
of the DMI on the spin-wave dispersion in an Fe double
layer grown on W(110). The experimental results are in
agreement with theoretical predictions based on a classical
spin-wave model.>* Otherwise the approach®® yields no pre-
diction for the concrete realization of the spiral states favored
by the DMI and furthermore, the results are obtained for
fixed temperatures. Very recently, the significance of tem-
perature effects on the magnon spectrum has been pointed
out.?! From a microscopic point of view, the quantum DMI
modifies the spectrum of the excitation energy. It is therefore
the aim of the present Brief Report to elucidate the relation
between the spin-wave excitation energy and the magnetic
alignment of the spins. The progress can be reached by ap-
plying a representation of the underlying spin operators with
an arbitrary quantization axis.*? This approach enables us to
include a broad class of spin-spiral structures. The Hamil-
tonian includes both, the isotropic Heisenberg coupling, an
anisotropic interaction and the DMI. The spin-wave energy is
found by calculating the temperature-dependent retarded
Green’s function matrix. Minimizing the ground-state energy
yields the direction of the quantization axis. The method al-
lows also to find out the temperature dependence of the spin-
wave excitations and its asymmetry.

An extended Heisenberg model is chosen to represent the
underlying magnetic system. The isotropic Heisenberg model
H, describes the coupling of the spins in the magnetic system
and drives the parallel or antiparallel alignment. The asym-
metric DMI H, favors a canting of the spins in the plane
perpendicular to the DM vector D. Because of the asymmet-
ric superexchange interaction of the magnetic moments, the
spins orient in a noncollinear fashion, which can be the ori-
gin of a spiral-spin structure of several types. The Hamil-
tonian reads

H=H1+H2+H3, (1)

where the three part are defined by
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An anisotropy in a certain 7 direction is included by the third
term H;. In the upcoming calculations, we will restricted
ourself to 7=z. In H,, the summation is taken over all nearest
neighbors and J;; denotes the symmetric exchange interac-
tion. The spin couples also to an intrinsic anisotropy field HA
establishing a spiral structure out off the x-y plane provided
this field points in z direction. The relativistic spin-orbit in-
teraction reflected in the DMI H, is determined by the anti-
symmetric coupling D;;.

For the description of magnetic systems with a spiral
structure, some special cases had been discussed in Refs. 33
and 34, it is appropriate to transform the spin operators to the
eigenrepresentation of the quantization axis. Here, the quan-
tization axis, see Fig. 1, at site f of the lattice is given by the
real unit vector = (y}, ¥} ¥p)=(p cos Qrf,p sin Qry, 7).
The respectlve transformation of the spln-2 operators w1th
o= E_b by is given in terms of Pauli operators b* and b.
The most general form is

S§= o+ Afbs+ (A7) by (4)

The coefficients in Eq. (4) are chosen in such a manner
that the commutation relations of spin operators are guaran-
teed. Using the realization’? A} ——-[)/Z cos @+ sin ¢f], A}
= 2[')/“ sin @p—i cos ¢f], Aj=% / the Hamiltonian is trans-
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formed into in the following compressed form where only
even terms in the annihilation and creation operators has to
be taken into account:

lf“b+

ijvi

E{XUO'O' +28,bbt + Rybib; + R,

- gup2 (HY) Yo, (5)

The prefactors in the Hamiltonian represent the renormalized
interaction between the spins including the Heisenberg inter-
action and the asymmetric DMI pointing in z direction. The
Fourier-transformed prefactors are defined in the subsequent
section. Notice that within this representation, the asymmetry
is reflected by the relation S;; # Sj;.

In many-particle systems, the thermodynamic Green’s
function method is a powerful tool to elucidate the spin-wave
dispersion relation given by the poles of the Green’s function
defined as ((b(1);b*(t"))y=—i®(t—1t"){[b(¢),b*(¢')]_). Here,
the temperature dependence enters by the ensemble average
(+++). The decoupling of the equations of motion is done by
random phase approximation. After some algebra, the exci-
tation energy of spin waves can be derived by the eigenval-
ues of the following matrix equation

(w -£1(q.Q)  &(q.Q) )( (b;b" g (bib))g )
-)(q.Q) w+e(=q,Q)/\ (BTN (bTib))g
. _J
e
A
_ (2(0) 0 )
L0 -2/ (6)

where &,(q.Q)=(a)[X(0,Q)-25(q, Q)]+g,uB(HA)“7a and
£2(4.Q)=2(0)R(q.Q)=(0)5[J(@)+/(q)~5P(q.Q)] with
X(q Q)= [J(q)+JA(q)](V)2 2P(q.Q) and  S(q.Q)

=3[J(@)+74(q)]p*- 8[(76)2+1]P(q Q)+;¥V(q,Q). The
magnetlzatlon points in direction of the magnetic anisotropy.
Spin waves of wave vector q and the direction of the propa-
gation of the incommensurate spin spiral with wave vector Q
are defined by the quantization axis . In case of 7=z, the
spiral orientations vary around the z direction. The deviation
from the collinear state is characterized by y"<<1. In the
parallel aligned state, the condition reads y"=1. The cycloi-
dal or screw state corresponds to y"=0. The wave vector of
the spin spiral is determined by minimizing the free energy.
The dispersion relation of the low-lying states reads

y{o) 1
e(q,Q =—V(q,Q) = \/ -
2 2

with

1 1
(77(0>)2[J(q) +J4(q) - EP(q,Q)] - <0)2[J(q) +J4(q) - EP(O,Q)] [P(0,Q) - P(q.Q)]

(7
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FIG. 2. (Color online) Asymmetric spin-wave dispersion rela-
tion for two different chirality (red/blue), at three different tempera-
tures 71=1 K, 7,=50 K and 75=95 K. The lower graphs show
the change in the excitation energy around aqx=§, if the chirality is
reversed. The phase transition temperature is about 7,.=100 K. The
parameters read J=100 K, J/A=0.1 K, |[D¥=10 K, H*=0.0001 K,
and y*=0.6.

gupH A

SP0.Q) - [7(0) +J4(0)]

y<o) = (8)

The last equation determines the wave vector Q. The chiral-
ity is defined by the rotational sense of this vector. The dis-
persion relation of the magnetic system obtained in Eq. (7)
consists of two parts. The asymmetric first part, the function
V(q,Q) is defined below in Eq. (9), only contributes in case
of a spin alignment with an additional component in the
direction of the DM vector. This can be interpreted as a
conical spin spiral. The second part is symmetric with a
renormalized interaction P(q,Q)=J(q+Q)+J(q-Q)
+i[D"(q—Q)-D"(q+Q)] and contributes also in case of a
screw or cycloidal spin ordering. The positive branch of the
spin-wave dispersion relation is chosen because a negative
excitation energy indicates an instability of the system. In
case of y"# 0, the dispersion relation becomes asymmetric.
The rotational sense (chirality) is defined by the interplay
between the different interactions of the magnetic system.
This results in a wave vector Q related to a constant canting
of spins between adjacent lattice sites. The rotational sense
depends on the sign of the DMI, allowing only one type of
chirality, which is in accordance with Ref. 2. In Fig. 2, the
calculated spin-wave spectrum is shown along g,.
The asymmetry is characterized by

PHYSICAL REVIEW B 82, 052401 (2010)

25 v T T
— T (7 =+0.6) = Ty ( =-06)
s T (77 =+40.6) *ttt Tp (77 =-0.6)

2.0 f == Ty (" = +0.6) ==" Ty (" = -0.6)

Asymmetry Ae (K)

-3 2 -1 0 1 2 3
Wavevector agy

FIG. 3. (Color online) Asymmetry of energy as a function of
wave vector for two different directions of magnetization at three
different temperatures (7} <T,<T3). For a fixed temperature, this
behavior is observed in Ref. 29.

Ae(q,Q) = ¥(o)V(q.Q) = y(o){/(q+ Q) - J(q - Q)
+i[D(q+Q)+D(q-Q)]}. )

Here both, the symmetric J;; and the antisymmetric interac-
tion Dj; contribute to the chirality-dependent asymmetry. In
accordance with recent calculations,*® only the components
of the DM vector parallel to the ground-state magnetization
y" influence the dispersion relation. In case of all moments
are perpendicular to the anisotropy direction (y"=0) the
asymmetry vanishes. The asymmetry is depicted in Fig. 3. It
shows a distinct maximum at ag,=7, with the lattice con-
stant a. A switching of the magnetization is equivalent to a
change in sign of ¥ and affects the asymmetry in agreement
with recent experimental results.?” The deviations of the
asymmetry in experiments to those of the model are assumed
to be related to the restriction to nearest-neighbor interaction
and a different coordination number. Because the Green’s
function, defined in Eq. (6), includes the statistical average
we find also the temperature dependence of the asymmetry
via the temperature dependence of the magnetization (o).
With increasing temperature, the asymmetry is reduced as
shown in Fig. 3.

Magnetic systems of spin % with noncollinear spin struc-
tures are investigated in the framework of temperature-
dependent two-time retarded Green’s function technique.
The inclusion of the asymmetric Dzyaloshinskii-Moriya in-
teraction leads to an asymmetric spin-wave dispersion rela-
tion in case of conical spirals. The induced asymmetry in the
energy is governed by the symmetric Heisenberg exchange
coupling, the anisotropy, and the antisymmetric DMI. The
chirality is represented by the incommensurate wave vector
of the spin spiral. The method enables the inclusion of
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temperature effects. Here, a reduction in the asymmetry is
observed for increasing temperature. A cycloidal or screw
*alignment of the spins would not lead to an asymmetric
dispersion relation. Referring to recent experimental results
ruling out longitudinal conical spin spirals, the magnetic or-
dering in these systems has to be of transverse conical type.
The asymmetry is calculated for a cubic lattice with nearest-
neighbor interaction. Although not so pronounced, compared
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to thin films, the asymmetry is also expected to occur in
multiferroic spinel oxids.

We acknowledge support by the International Max Planck
Research School for Science and Technology of Nanostruc-
tures in Halle. Further, we benefit from valuable discussions
with Juergen Kirschner and Khalil Zakeri from the Max-
Planck-Institute of Microstructure Physics.

*thomas.michael @ physik.uni-halle.de
Tsteffen.trimper @physik.uni-halle.de
'P. Weinberger, Magnetic Anisotropies in Nanostructured Matter
(CRC Press, Boca Raton, FL, 2008).
2M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G.
Bihlmayer, A. Kubetzka, O. Pietzsch, S. Bluegel, and R. Wie-
sendanger, Nature (London) 447, 190 (2007).
3p Ferriani, K. von Bergmann, E. Y. Vedmedenko, S. Heinze, M.
Bode, M. Heide, G. Bihlmayer, S. Blugel, and R. Wiesendanger,
Phys. Rev. Lett. 101, 027201 (2008).
4M. Heide, G. Bihlmayer, and S. Blugel, Phys. Rev. B 78,
140403(R) (2008).
SE. Y. Vedmedenko, L. Udvardi, P. Weinberger, and R. Wiesen-
danger, Phys. Rev. B 75, 104431 (2007).
%M. Heide, G. Bihlmayer, and S. Bluegel, Physica B 404, 2678
(2009).
7S. Meckler, N. Mikuszeit, A. Pressler, E. Y. Vedmedenko, O.
Pietzsch, and R. Wiesendanger, Phys. Rev. Lett. 103, 157201
(2009).
81. E. Dzyaloshinskii, Sov. Phys. JETP 5, 1259 (1957).
°T. Moriya, Phys. Rev. 120, 91 (1960).
10, Shekhtman, O. Entin-Wohlman, and A. Aharony, Phys. Reyv.
Lett. 69, 836 (1992).
'D. N. Aristov and S. V. Maleyev, Phys. Rev. B 62, R751 (2000).
128, V. Maleyev, Phys. Rev. B 73, 174402 (2006).
BR. Jafari, M. Kargarian, A. Langari, and M. Siahatgar, Phys.
Rev. B 78, 214414 (2008).
14M. Tovar, K. S. Raman, and K. Shtengel, Phys. Rev. B 79,
024405 (2009).
5D, Belitz, T. R. Kirkpatrick, and A. Rosch, Phys. Rev. B 73,
054431 (2006).
oM. Fiebig, J. Phys. D 38, R123 (2005).

7K. F. Wang, J. M. Liu, and Z. F. Ren, Adv. Phys. 58, 321 (2009).

18], van den Brink and D. I. Khomskii, J. Phys.: Condens. Matter
20, 434217 (2008).

9T, Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y.
Tokura, Nature (London) 426, 55 (2003).

20M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer,
S. B. Kim, C. L. Zhang, S.-W. Cheong, O. P. Vajk, and J. W.
Lynn, Phys. Rev. Lett. 95, 087206 (2005).

2T, Kimura and Y. Tokura, J. Phys.: Condens. Matter 20, 434204
(2008).

22H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95,
057205 (2005).

23H. Katsura, A. V. Balatsky, and N. Nagaosa, Phys. Rev. Lett. 98,
027203 (2007).

2¥M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).

251, A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434 (2006).

26C. D. Hu, Phys. Rev. B 77, 174418 (2008).

278, Dong, K. Yamauchi, S. Yunoki, R. Yu, S. Liang, A. Moreo, J.
M. Liu, S. Picozzi, and E. Dagotto, Phys. Rev. Lett. 103,
127201 (2009).

28C. Jia and J. Berakdar, EPL 85, 57004 (2009).

K. Zakeri, Y. Zhang, J. Prokop, T.-H. Chuang, N. Sakr, W. X.
Tang, and J. Kirschner, Phys. Rev. Lett. 104, 137203 (2010).
3L, Udvardi and L. Szunyogh, Phys. Rev. Lett. 102, 207204

(2009).

31 A. Bergman, A. Taroni, L. Bergqvist, J. Hellsvik, B. Hjorvars-
son, and O. Eriksson, Phys. Rev. B 81, 144416 (2010).

328, W. Tjablikow, Quantentheoretische Methoden des Magnetis-
mus (Teubner, Leipzig, 1968).

3T. Kaplan, Phys. Rev. 124, 329 (1961).

34B. Cooper and R. Elliott, Phys. Rev. 131, 1043 (1963).

052401-4


http://dx.doi.org/10.1038/nature05802
http://dx.doi.org/10.1103/PhysRevLett.101.027201
http://dx.doi.org/10.1103/PhysRevB.78.140403
http://dx.doi.org/10.1103/PhysRevB.78.140403
http://dx.doi.org/10.1103/PhysRevB.75.104431
http://dx.doi.org/10.1016/j.physb.2009.06.070
http://dx.doi.org/10.1016/j.physb.2009.06.070
http://dx.doi.org/10.1103/PhysRevLett.103.157201
http://dx.doi.org/10.1103/PhysRevLett.103.157201
http://dx.doi.org/10.1103/PhysRev.120.91
http://dx.doi.org/10.1103/PhysRevLett.69.836
http://dx.doi.org/10.1103/PhysRevLett.69.836
http://dx.doi.org/10.1103/PhysRevB.62.R751
http://dx.doi.org/10.1103/PhysRevB.73.174402
http://dx.doi.org/10.1103/PhysRevB.78.214414
http://dx.doi.org/10.1103/PhysRevB.78.214414
http://dx.doi.org/10.1103/PhysRevB.79.024405
http://dx.doi.org/10.1103/PhysRevB.79.024405
http://dx.doi.org/10.1103/PhysRevB.73.054431
http://dx.doi.org/10.1103/PhysRevB.73.054431
http://dx.doi.org/10.1088/0022-3727/38/8/R01
http://dx.doi.org/10.1080/00018730902920554
http://dx.doi.org/10.1088/0953-8984/20/43/434217
http://dx.doi.org/10.1088/0953-8984/20/43/434217
http://dx.doi.org/10.1038/nature02018
http://dx.doi.org/10.1103/PhysRevLett.95.087206
http://dx.doi.org/10.1088/0953-8984/20/43/434204
http://dx.doi.org/10.1088/0953-8984/20/43/434204
http://dx.doi.org/10.1103/PhysRevLett.95.057205
http://dx.doi.org/10.1103/PhysRevLett.95.057205
http://dx.doi.org/10.1103/PhysRevLett.98.027203
http://dx.doi.org/10.1103/PhysRevLett.98.027203
http://dx.doi.org/10.1103/PhysRevLett.96.067601
http://dx.doi.org/10.1103/PhysRevB.73.094434
http://dx.doi.org/10.1103/PhysRevB.77.174418
http://dx.doi.org/10.1103/PhysRevLett.103.127201
http://dx.doi.org/10.1103/PhysRevLett.103.127201
http://dx.doi.org/10.1209/0295-5075/85/57004
http://dx.doi.org/10.1103/PhysRevLett.104.137203
http://dx.doi.org/10.1103/PhysRevLett.102.207204
http://dx.doi.org/10.1103/PhysRevLett.102.207204
http://dx.doi.org/10.1103/PhysRevB.81.144416
http://dx.doi.org/10.1103/PhysRev.124.329
http://dx.doi.org/10.1103/PhysRev.131.1043

